8 (495) 660-35-14

8 (800) 333-06-27

г. Москва,ул. Рогожский поселок. д.3
E-mail: info@nivey.ru

Как работает кондиционер? Основные принципы

Все знают, что главная задача любого кондиционера – охлаждение воздуха в помещении, где он установлен. Некоторые агрегаты при этом могут работать также на обогрев, однако эта функция есть не у всех.

Впрочем, в любой из этих ситуаций холодильные установки всегда характеризуются одной и той же особенностью: они не обеспечивают вентиляцию и не забирают свежий воздух с улицы, выводя за пределы помещения «использованную» часть. В кондиционерах предусмотрены особые закрытые циклы работы, которые позволяют получать охлажденный (нагретый воздух) на основе того объема, который уже есть в помещении. И хотя в целом принцип работы такого оборудования достаточно прост, пользователям обязательно стоит знать ее нюансы. Это поможет им быстро сориентироваться в случае поломки и самостоятельно определить, какой узел нуждается в ремонте.

 

Технические параметры работы кондиционера

В целом, охлаждение воздуха в холодильном оборудовании происходит при помощи особого цикла работы, называемого компрессионным. И в этом цикле важно обратить внимание на несколько характеристик:

1. Температура кипения жидкости

Она прямо пропорционально зависит от давления окружающей среды: чем выше это давление, тем более высокой будет и температура кипения. К примеру, при нормальном атмосферном давлении, показатель которого составляет 760 мм рт. ст., вода закипает при температуре 100 градусов. Однако при повышении этого давления температура тоже будет более высокой. При понижении же она уменьшится, и именно поэтому вода в горах может иногда закипать даже при температуре 70 градусов. Как правило, при изменении давления в пределах 27 мм рт. ст. температура кипения меняется на 1 градус.

Другие жидкости могут закипать при других уровнях температуры. К примеру, температура кипения жидкого азота составляет -77 градусов, а фреон марки R-22, используемый в большинстве современных кондиционеров, закипает при -40,8 градусов, если атмосферное давление будет нормальным. Этот показатель нужно учитывать обязательно.

2. Теплота парообразования

Испаряясь, жидкость поглощает теплоту из окружающей среды. Однако когда пар конденсируется, эта теплота, напротив, начинает выделяться, и в целом, показатель теплоты парообразования жидкостей достаточно велик. К примеру, энергия, которая будет необходима для испарения всего 1 грамма воды при температуре 100 градусов (расход энергии – 539 калорий/грамм), будет значительно превышать энергию, необходимую для нагревания этого же количества воды от 0 до 100 градусов (расход – 100 калорий/грамм).

Фреон же, помещенный в открытый сосуд и находящийся в жидком состоянии, при комнатной температуре и нормальном атмосферном давлении закипит сразу же, поглощая очень много теплоты из окружающей среды. Именно эта его способность и используется в холодильных установках:

1.    Вначале фреон, находящийся в специальном отделении, называемом испарителем, превращается в пар.
2.    Затем трубки испарителя обдуваются воздушным потоком.
3.    Фреон начинает поглощать тепло из этого воздуха, охлаждая его.

3. Температура конденсации

Следует учитывать, что кондиционер не может только испарять фреон и поглощать тепло – в такой ситуации в нем образовалось бы очень много паров, и жидкий хладагент потребовалось бы подводить постоянно, каждый раз забирая все новые и новые партии. Чтобы этого не произошло, в кондиционерах используется обратный процесс конденсации, когда пар превращается в жидкость.

Когда жидкость конденсируется, она выделяет тепло, поступающее в окружающую среду. Температура конденсации при этом, как и температура кипения, напрямую зависит от давления окружающей среды: при повышенном давлении процесс конденсации может проходить при очень высоких температурах, при низком – наоборот. Например, все тот же фреон марки R-22 начнет конденсироваться при +55 градусах, если давление составит 23 атмосферы или около 17,5 тыс. мм рт. ст.

 

Как работает холодильная машина?

В этом агрегате фреон конденсируется в специально предназначенном для этого отделении – конденсаторе. При этом тепло, которое будет выделяться в ходе процесса, удаляется потоками воздуха или охлаждающей жидкости.

Учитывая, что холодильная установка должна работать без перерывов, в испаритель нужно постоянно подавать жидкий фреон, а в конденсатор должны непрерывно поступать его пары. Такой процесс всегда будет цикличным, что позволит циркулировать по холодильной машине строго ограниченному объему хладагента.

 

Что такое энтальпия хладагента?

Под этим термином подразумевают соотношение теплосодержания хладагента и его давления. Это функция состояния, и в процессе с постоянным давлением ее приращение будет равно теплоте, получаемой системой. В кривой насыщения хладагента можно увидеть, что насыщенная жидкость и насыщенный пар соединяются в критической точке. Вещество в этом процессе может быть как в газообразном, так и в жидком состоянии. При этом есть область меньшей энтальпии, где находится переохлажденная жидкость, и область большей энтальпии, где находится перегретый пар.

Также следует учитывать, что теоретический цикл охлаждения отличается от практических показателей.
На самом деле обычно на разных этапах перемещения хладагента происходят потери давления, которые существенно снижают эффективность охлаждения. И все же именно на теоретический цикл следует ориентироваться, изучая специфику работы холодильного оборудования.

 

Теоретический цикл: основные особенности

1. Компрессор

В это отделение поступает холодный насыщенный пар фреона, где он сжимается. Температура и давление при сжатии повышаются, а также увеличивается энтальпия.

2. Конденсация

Когда процесс сжатия хладагента завершается, в конденсатор поступает горячий пар. Он конденсируется при постоянной температуре и неизменном давлении, и на выходе остается горячая жидкость. Несмотря на постоянный показатель температуры, энтальпия при фазовом переходе снижается, а тепло, выделившееся в процессе, отделяется от конденсатора.

В целом, весь процесс конденсации происходит в три этапа:

1.    Вначале снимается перегрев. В процессе температура пара понижается до температуры насыщения. Лишнее тепло (около 10-20%) выводится, однако хладагент остается в прежнем агрегатном состоянии.
2.    Затем происходит непосредственно конденсация. На этом этапе агрегатное состояние хладагента уже начинает меняться, но температура остается неизменной. Лишнее тепло (60-80%) также отводится.
3.    После этого начинается переохлаждение жидкости. Жидкий хладагент в этом процессе начинает охлаждаться, что и приводит к образованию переохлажденной жидкости. Агрегатное состояние хладагента тоже не меняется, но производительность кондиционера при этом повышается. Если уровень энергопотребления будет постоянным, снижение температуры на 1 градус позволит повысить производительность всей установки на 1%.


3. Регулятор потока

Переохлажденная жидкость подается на регулятор холодильного оборудования, который выполнен в виде терморегулирующего расширительного клапана или капиллярной трубки. В этом отделении кондиционера давление резко снижается, и сразу за регулятором хладагент начинает кипеть.

4. Испаритель

В испаритель попадает смесь жидкости и пара. Там тепло от окружающей среды поглощается, полностью переходя в пар, что происходит при неизменной температуре, однако энтальпия в этом процессе растет. На выходе из испарителя фреон, находящийся в состоянии пара, несколько перегревается, что позволяет каплям жидкости полностью испариться. Чтобы это произошло, площадь теплообменной поверхности в испарителе увеличивается (примерно на 4-6% на каждый градус перегрева). Как правило, перегрев бывает равен 5-8 градусам, и, таким образом, площадь теплообмена увеличивается на 20%.

 

Реальный цикл охлаждения: основные отличия

В целом, отличия появляются прежде всего вследствие потерь давления, которые возникают на линии нагнетания и всасывания холодильного оборудования и в клапанах компрессора. Из-за этих потерь всасывание на входе в компрессор должно происходить при давлении, показатель которого ниже, чем параметры давления испарения, а на выходе компрессору придется сжать пар хладагента до давления, превышающего показатель давления конденсации. В результате этого работа сжатия возрастает, и такая компенсация потерь в реальном цикле снижает его эффективность.

Помимо потерь давления, в трубках кондиционера будут наблюдаться и другие отклонения от теоретического цикла:

1.    Реальное сжатие фреона в компрессоре не будет строго адиабатическим (то есть без подвода и отвода тепла), поэтому работа сжатия будет выше, нежели рассчитанные показатели.
2.    В компрессоре кондиционера будут происходить механические потери энергии, что вызовет увеличение необходимой мощности электродвигателя.

 

Эффективность цикла охлаждения

Чтобы выбрать лучший цикл охлаждения, следует оценить эффективность каждого из возможных. Как правило, показателем этой эффективности является параметр КПД или же коэффициент термодинамической (термической) эффективности – отношение измерения энтальпии фреона в испарителе к показателям изменения энтальпии в процессе сжатия. Также под этим термином можно понимать соотношение электрической мощности, потребляемой компрессором кондиционера, и мощности охлаждения. К примеру, если коэффициент термодинамической эффективности холодильного оборудования составит 2, на каждый киловатт потребляемой энергии кондиционер будет производить 2 киловатта холода.